Skip to main content

What is mechanical engineering?

What Is Mechanical Engineering?

Technically, mechanical engineering is the application of the principles and problem-solving techniques of engineering from design to manufacturing to the marketplace for any object. Mechanical engineers analyze their work using the principles of motion, energy, and force—ensuring that designs function safely, efficiently, and reliably, all at a competitive cost.
Mechanical engineers make a difference. That's because mechanical engineering careers center on creating technologies to meet human needs. Virtually every product or service in modern life has probably been touched in some way by a mechanical engineer to help humankind.
This includes solving today's problems and creating future solutions in health care, energy, transportation, world hunger, space exploration, climate change, and more.
Being ingrained in many challenges and innovations across many fields means a mechanical engineering education is versatile. To meet this broad demand, mechanical engineers may design a component, a machine, a system, or a process. This ranges from the macro to the micro, from the largest systems like cars and satellites to the smallest components like sensors and switches. Anything that needs to be manufactured—indeed, anything with moving parts—needs the expertise of a mechanical engineer.

What do mechanical engineers do?

Mechanical engineering combines creativity, knowledge and analytical tools to complete the difficult task of shaping an idea into reality.
This transformation happens at the personal scale, affecting human lives on a level we can reach out and touch like robotic prostheses. It happens on the local scale, affecting people in community-level spaces, like with agile interconnected microgrids. And it happens on bigger scales, like with advanced power systems, through engineering that operates nationwide or across the globe.
Mechanical engineers have an enormous range of opportunity and their education mirrors this breadth of subjects. Students concentrate on one area while strengthening analytical and problem-solving skills applicable to any engineering situation.
Disciplines within mechanical engineering include but are not limited to:
  • Acoustics
  • Aerospace
  • Automation
  • Automotive
  • Autonomous Systems
  • Biotechnology
  • Composites
  • Computer Aided Design (CAD)
  • Control Systems
  • Cyber security
  • Design
  • Energy
  • Ergonomics
  • Human health
  • Manufacturing and additive manufacturing
  • Mechanics
  • Nanotechnology
  • Production planning
  • Robotics
  • Structural analysis
Technology itself has also shaped how mechanical engineers work and the suite of tools has grown quite powerful in recent decades. Computer-aided engineering (CAE) is an umbrella term that covers everything from typical CAD techniques to computer-aided manufacturing to computer-aided engineering, involving finite element analysis (FEA) and computational fluid dynamics (CFD). These tools and others have further broadened the horizons of mechanical engineering.

What careers are there in mechanical engineering?

Society depends on mechanical engineering. The need for this expertise is great in so many fields, and as such, there is no real limit for the freshly minted mechanical engineer. Jobs are always in demand, particularly in the automotive, aerospace, electronics, biotechnology, and energy industries.
Here are a handful of mechanical engineering fields.
In statics, research focuses on how forces are transmitted to and throughout a structure. Once a system is in motion, mechanical engineers look at dynamics, or what velocities, accelerations and resulting forces come into play. Kinematics then examines how a mechanism behaves as it moves through its range of motion.
Materials science delves into determining the best materials for different applications. A part of that is materials strength—testing support loads, stiffness, brittleness and other properties—which is essential for many construction, automobile, and medical materials.
How energy gets converted into useful power is the heart of thermodynamics, as well as determining what energy is lost in the process. One specific kind of energy, heat transfer, is crucial in many applications and requires gathering and analyzing temperature data and distributions.
Fluid mechanics, which also has a variety of applications, looks at many properties including pressure drops from fluid flow and aerodynamic drag forces.
Manufacturing is an important step in mechanical engineering. Within the field, researchers investigate the best processes to make manufacturing more efficient. Laboratory methods focus on improving how to measure both thermal and mechanical engineering products and processes. Likewise, machine designdevelops equipment-scale processes while electrical engineering focuses on circuitry. All this equipment produces vibrations, another field of mechanical engineering, in which researchers study how to predict and control vibrations.
Engineering economics makes mechanical designs relevant and usable in the real world by estimating manufacturing and life cycle costs of materials, designs, and other engineered products.

What skills do mechanical engineers need?

The essence of engineering is problem solving. With this at its core, mechanical engineering also requires applied creativity—a hands on understanding of the work involved—along with strong interpersonal skills like networking, leadership, and conflict management. Creating a product is only part of the equation; knowing how to work with people, ideas, data, and economics fully makes a mechanical engineer.

What tasks do mechanical engineers do?

Careers in mechanical engineering call for a variety of tasks.
  • Conceptual design
  • Analysis
  • Presentations and report writing
  • Multidisciplinary teamwork
  • Concurrent engineering
  • Benchmarking the competition
  • Project management
  • Prototyping
  • Testing
  • Measurements
  • Data Interpretation
  • Developmental design
  • Research
  • Analysis (FEA and CFD)
  • Working with suppliers
  • Sales
  • Consulting
  • Customer service

Mechanical engineering is one of the broadest engineering disciplines. Mechanical engineers design, develop, build, and test. They deal with anything that moves, from components to machines to the human body.

What Is Mechanical Engineering?

Technically, mechanical engineering is the application of the principles and problem-solving techniques of engineering from design to manufacturing to the marketplace for any object. Mechanical engineers analyze their work using the principles of motion, energy, and force—ensuring that designs function safely, efficiently, and reliably, all at a competitive cost.
Mechanical engineers make a difference. That's because mechanical engineering careers center on creating technologies to meet human needs. Virtually every product or service in modern life has probably been touched in some way by a mechanical engineer to help humankind.
This includes solving today's problems and creating future solutions in health care, energy, transportation, world hunger, space exploration, climate change, and more.
Being ingrained in many challenges and innovations across many fields means a mechanical engineering education is versatile. To meet this broad demand, mechanical engineers may design a component, a machine, a system, or a process. This ranges from the macro to the micro, from the largest systems like cars and satellites to the smallest components like sensors and switches. Anything that needs to be manufactured—indeed, anything with moving parts—needs the expertise of a mechanical engineer.
What do mechanical engineers do?

What do mechanical engineers do?

Mechanical engineering combines creativity, knowledge and analytical tools to complete the difficult task of shaping an idea into reality.
This transformation happens at the personal scale, affecting human lives on a level we can reach out and touch like robotic prostheses. It happens on the local scale, affecting people in community-level spaces, like with agile interconnected microgrids. And it happens on bigger scales, like with advanced power systems, through engineering that operates nationwide or across the globe.
Mechanical engineers have an enormous range of opportunity and their education mirrors this breadth of subjects. Students concentrate on one area while strengthening analytical and problem-solving skills applicable to any engineering situation.
Disciplines within mechanical engineering include but are not limited to:
  • Acoustics
  • Aerospace
  • Automation
  • Automotive
  • Autonomous Systems
  • Biotechnology
  • Composites
  • Computer Aided Design (CAD)
  • Control Systems
  • Cyber security
  • Design
  • Energy
  • Ergonomics
  • Human health
  • Manufacturing and additive manufacturing
  • Mechanics
  • Nanotechnology
  • Production planning
  • Robotics
  • Structural analysis
Technology itself has also shaped how mechanical engineers work and the suite of tools has grown quite powerful in recent decades. Computer-aided engineering (CAE) is an umbrella term that covers everything from typical CAD techniques to computer-aided manufacturing to computer-aided engineering, involving finite element analysis (FEA) and computational fluid dynamics (CFD). These tools and others have further broadened the horizons of mechanical engineering.
What careers are there in mechanical engineering?

What careers are there in mechanical engineering?

Society depends on mechanical engineering. The need for this expertise is great in so many fields, and as such, there is no real limit for the freshly minted mechanical engineer. Jobs are always in demand, particularly in the automotive, aerospace, electronics, biotechnology, and energy industries.
Here are a handful of mechanical engineering fields.
In statics, research focuses on how forces are transmitted to and throughout a structure. Once a system is in motion, mechanical engineers look at dynamics, or what velocities, accelerations and resulting forces come into play. Kinematics then examines how a mechanism behaves as it moves through its range of motion.
Materials science delves into determining the best materials for different applications. A part of that is materials strength—testing support loads, stiffness, brittleness and other properties—which is essential for many construction, automobile, and medical materials.
How energy gets converted into useful power is the heart of thermodynamics, as well as determining what energy is lost in the process. One specific kind of energy, heat transfer, is crucial in many applications and requires gathering and analyzing temperature data and distributions.
Fluid mechanics, which also has a variety of applications, looks at many properties including pressure drops from fluid flow and aerodynamic drag forces.
Manufacturing is an important step in mechanical engineering. Within the field, researchers investigate the best processes to make manufacturing more efficient. Laboratory methods focus on improving how to measure both thermal and mechanical engineering products and processes. Likewise, machine designdevelops equipment-scale processes while electrical engineering focuses on circuitry. All this equipment produces vibrations, another field of mechanical engineering, in which researchers study how to predict and control vibrations.
Engineering economics makes mechanical designs relevant and usable in the real world by estimating manufacturing and life cycle costs of materials, designs, and other engineered products.
What skills do mechanical engineers need?

What skills do mechanical engineers need?

The essence of engineering is problem solving. With this at its core, mechanical engineering also requires applied creativity—a hands on understanding of the work involved—along with strong interpersonal skills like networking, leadership, and conflict management. Creating a product is only part of the equation; knowing how to work with people, ideas, data, and economics fully makes a mechanical engineer.

What tasks do mechanical engineers do?

Careers in mechanical engineering call for a variety of tasks.
  • Conceptual design
  • Analysis
  • Presentations and report writing
  • Multidisciplinary teamwork
  • Concurrent engineering
  • Benchmarking the competition
  • Project management
  • Prototyping
  • Testing
  • Measurements
  • Data Interpretation
  • Developmental design
  • Research
  • Analysis (FEA and CFD)
  • Working with suppliers
  • Sales
  • Consulting
  • Customer service
How much do mechanical engineers earn?

How much do mechanical engineers earn?

Like careers in many other engineering fields, mechanical engineers are well paid. Compared to other fields, mechanical engineers earn well above average throughout each stage of their careers. According to the United States Department of Labor, the mean salary for a mechanical engineer is $89,800, with the top ten percent earning close to $131,350.


The future of mechanical engineering

Breakthroughs in materials and analytical tools have opened new frontiers for mechanical engineers. Nanotechnology, biotechnology, composites, computational fluid dynamics (CFD), and acoustical engineering have all expanded the mechanical engineering toolbox. 
Nanotechnology allows for the engineering of materials on the smallest of scales. With the ability to design and manufacture down to the elemental level, the possibilities for objects grows immensely. Composites are another area where the manipulation of materials allows for new manufacturing opportunities. By combining materials with different characteristics in innovative ways, the best of each material can be employed and new solutions found. CFD gives mechanical engineers the opportunity to study complex fluid flows analyzed with algorithms. This allows for the modeling of situations that would previously have been impossible. Acoustical engineering examines vibration and sound, providing the opportunity to reduce noise in devices and increase efficiency in everything from biotechnology to architecture.

Comments

Popular posts from this blog

Plasma Propulsion Rockets

Hey guys, here with you bringing another new article related to technology. Th topics on which this article is based on is none other but plasma propulsion rockets. An this surely a trending technology which is under development in the present but is surely going to a bright future in the upcoming years. With the higher velocity propulsion engine the rockets equipped with these technologies will will be able to travel much faster through the interstellar space. So heading on to the topic. A plasma propulsion engine is a kind of electric drive that creates thrust from a quassi-neutral plasma. This is in contrast to ion thruster engine, which produce thrust through extracting an ion current from the plasma source, which is then accelerated to high speeds utilizing grids/anodes. These exist in numerous structures. Plasma engines don't commonly utilize high voltage grids or anodes/cathodes to accelerate the charged particles in the plasma, rather utilizes currents and potenti...

How will adding a track-and-trace system save your business?

In 2019, $2.92M worth of cargo goods were stolen in the United States. While some of them were recovered, many are still missing. Recovery of goods can take anywhere between one week to a decade. This makes security a serious issue to consider before you export your goods. Track and trace systems are an excellent solution to this problem. A track and trace system allows you to transport packages without any worry of tampering or damage. These are often used while exporting goods to far-off countries but can easily be used when you’re transporting sensitive information in folders, files, or even small boxes. Features of track and trace systems: Packaging: The packaging usually contains anti-counterfeit and anti-tamper elements, meaning it can only be opened by the sender and the receiver.  Barcode: A barcode is often provided with the packaging that contains all the information regarding the product. This can also be utilized to track the package remotely. Anti-counterfeit element...

Reasons Why Employees Hate HR and Practices to Re-energize Employees

Do you recall your workplace and its employees being satisfied with the HR department? In most cases, the answer would be a big NO! Be it a large-sized organization or small businesses, the perception for HR remains the same.  Ever wondered how HR creates this impression about themselves across several companies? Is it their inability to perform the given task? Or their lack of understanding and support towards all employees ?  Well, there could be numerous reasons behind this, which we shall explore below. But one thing that is constant in all these complaints: employees are unhappy with the HR , hence project resentment towards them.  In more recent times, the department is viewed as untrained or inexperienced to handle certain situations hence making employees frustrated. It is ironic as the HR department is responsible for training and developing employees to reach greater heights. Contrary to the name Human Resources, the department lacks the 'human' element on th...